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Higher-order Einstein relations for nonlinear charge 
transport 

S A Hopet,  G FCat$ and P T Landsberg 
Department of Mathematics, University of Southampton, Southampton, UK 

Received 19 January 1983 

Abstract. Nonlinear terms in relations for current densities are treated macroscopically, 
semi-microscopically and microscopically. In the macroscopic treatment, terms in d’, E’, 
(Vn)’, VZn and E * V n  are included, where C#J is the electrostatic potential, n is the carrier 
concentration and E is the electric field. The power series expansion of the current density 
is valid for equilibrium and yields conductivity-diffusion type Einstein relations. In the 
semi-microscopic approach a perturbation theory for the density matrix is used, and 
Einstein relations are then derived by equating the average of the current density operator 
to zero. In the microscopic approach a Kubo formalism is developed, based on a local 
non-equilibrium distribution function due to Mori. This leads to Einstein relations via 
correlation functions and Liouville’s equation. A set of such relations which emerge 
consistently from such a treatment is given. 

1. Introduction 

There are a number of distinct ways of approaching nonlinear transport phenomena. 
One can do so experimentally and phenomenologically, and this has been done 
extensively in the area of semiconductors. The charged particles are here often in 
strong electric fields and this gives rise to important phenomena: hot electrons, transfer 
effects, impact ionisation, etc. For reviews see for instance Barker et a1 (1980), Robbins 
(1980a, b), Urge11 (1978). The dominant theoretical tool is the Boltzmann transport 
equation using appropriate scattering processes. However, in moderate fields linear 
transport theory has been extensively confirmed in both solids and gases (Miller 1974). 

Leaving these physical effects on one side, we wish in this paper to explore the 
departure from the linear regime by using general macroscopic and microscopic 
methods without direct appeal to scattering mechanisms. Such an approach cannot be 
expected to yield explicit expressions for transport coefficients but, at best, relations 
between them. This is shown here by a macroscopic method (§ 2), a semi-microscopic 
method ( Q  3) and a microscopic method (0 4). The calculations to analyse nonlinear 
regimes are usually long and tedious, as has been known since Boltzmann’s time and the 
two long papers on the ‘distribution of velocities in a slightly non-uniform gas’ by 
Burnett (1934, 1935). In order to avoid too much algebra and too many special cases, 
therefore, we focus attention on a system at uniform temperature and ask how the 
Einstein relation has to be modified. Even so, the argument tends to become compli- 
cated and nothing like full mathematical details can be given in Q Q  3 and 4 of this paper. 

t Now at BP Research Centre, Sunbury-on-Thames. 
$ Now at the Department of Ship Science, University of Southampton, Southampton, UK. 
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But at least $ 2 gives the flavour of the argument and is simple. We focus on the Einstein 
relation because of its use in experimentally active solid state areas and because of a 
long-standing interest in it (Landsberg 1952, Landsberg and Hope 1977, FBat 1981). 

The electric, particle and heat currents 

J = -(+ grad 4, J p  = - D grad n, Jh= - A  grad T, 

receive additional terms on the right-hand side in a nonlinear theory, the number 
depending on the approximation one wishes to make. Here we are concerned only with 
J and J p ,  Powers of gradients, higher-order gradients and cross-terms between terms 
derived from 4 and n are required, as reviewed by Ernst et ai (1969) and recently 
considered by Mason and collaborators (Whealton and Mason 1974, Weinert and 
Mason 1980). We believe our approach to be different, since we allow for Fermi 
degeneracy, whereas Mason deals with classical gases (see also McDaniel and Mason 
1973). Nonetheless, a comparison of the two approaches would be desirable. Also we 
base OB 3 and 4 on fluctuation-dissipation theorems, which are not invoked by Weinert 
and Mason. In fact, it is simple to see how generalised Einstein relations can be 
obtained once one realises that the perturbations in the fluctuation-dissipation 
theorems can be taken to infinite order and that the lowest order is sufficient for the 
normal Einstein relation (Luttinger 1964, Korneev et a1 1974). This consideration 
guides us in $0 3 and 4. 

To give the reader some idea of the interest in the Einstein relations in Fermi 
systems, we conclude with a few references to relevant papers in the semiconductor 
area: Butcher eta1 (1974), Choudhury et a1 (1976), Jain (1977), Ghatak et a1 (1980). 

2. Macroscopic treatment 

The average current density along the coordinate x, can normally be represented as a 
sum of transport terms. For a system at uniform temperature these terms are of three 
kinds: those depending on the electric field E(r ) ,  those depending on the concentration 
gradient V n  ( r )  of the charged particles considered, and mixed terms. Accordingly it 
will be supposed that 

In the simplest (linear) theory only U(” and D(’) play a part. For stronger fields and/or 
concentration gradients the higher terms come successively into play. If the sample is 
not at a uniform temperature T additional sets of terms must be added to (2.1), namely 
those in V T, those in E and V T, those in V n  and V T and possibly terms in E, V n  and VT. 
However, these complications will not be pursued in this paper. 
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The electrochemical potential ii is related to the chemical potential p ( r )  and the 

f i  =CL(r)-1414(r). (2.3) 

Here q is the electric charge on the particles considered, and the sign convention is such 
that the electrochemical potential @ increases upwards for electrons and other nega- 
tively charged particles (Landsberg and Hope 1977, Landsberg 1978). Using partial 
derivatives at constant T and V, one then has 

electrostatic potential 4 ( r )  by 

as f i  is spatially constant in thermal equilibrium. Similarly, 

Substitution of (2.4) and (2.5) into (2.1) yields 

(J,  ( r  )> = A E: E, + A :;AV, EA + A F,!B E,Eb + A:,!e~ E,V, Ea + A $csVy EA v, E8 + . . . 
(2.6) 

where, with an(r) /ap(r )  written an/ap for brevity, 

A(')= ,(l)+qJqlb"' anlap (2nd-order tensors), 

(5  th-order tensors). 

A possible way of advancing to non-equilibrium situations from equilibrium (all at a 

A(') = 0 ,  i = l , 2 , 3 , 4 , 5 , .  . . .  (2.8) 

uniform temperature for the system) is to bring in successive terms in (2.6) so that 

This assumes that terms in 

E, V E ,  E * E, E * V E ,  V E  * V E  

are all of different orders of magnitude, and this may be reasonable for a sufficiently 
slowly varying electrostatic potential. Thus A(') = 0 yields a usual generalised Einstein 
relation (Landsberg and Hope 1977, Landsberg 1978): 

a(') = -qlsl(an(r)/ap(r))D"'. (2.9) 
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For electrons q = - lei, and U = le/nv, v being the mobility. Thus for a Maxwell- 
Boltzmann distribution one finds in the scalar case the usual result 

JelD‘”/u = kT. (2.10) 

Thus (2.9) is a generalised Einstein relation. Indeed, A‘”= 0, . . . , A”’ = 0 are 
generalisations of this procedure to the nonlinear regime. One finds 

U(’) = - qIq)(dn ( r ) / a p  (r))D(’), I 

(2.11) 

In all cases we see that a conductivity tensor is related to a diffusion tensor, just as in the 
linear regime. 

3. Semi-microscopic treatment 

A semi-microscopic interpretation of the macroscopic results (2.11) can be based on a 
density matrix approach. The unperturbed system with Hamiltonian H is perturbed at 
t = --03 to another configuration with Hamiltonian HT, and equilibrium averages are 
then calculated at a time t = 0. In this section only these averages will be treated, and 
where they refer to quantities considered in § 2, they will be assumed to be identical. 
Hence the approach is only semi-microscopic. The perturbation is regarded as due to 
an imposed electrostatic potential 4 ( r ) .  This contributes a term 

N 
F =  -le1 4 ( r , ) =  -le/  n(r)q5(r )dr=&H(1)  

j =  1 I, 
to HT, where the particle density is 

N 
( r )  = c 8 ( r  - r, ) , 

1 

and negatively charged particles are considered. We shall put 

(3.1) 

(3.2) 

H - p N  = H(O), exP[(pN - H T ) / ~ T ]  E A ( @ ) ,  (3.3) 

so that the ‘initial’ and ‘final’ density matrices in grand canonical ensembles are 
respectively 

po = exp( -PH‘”)/Eo, PT = A(P) /Z ,  (3.4) 
their traces being unity. 

that 
Following the method of Nakajima (1955) and others, we note from (3.1) and (3.3) 

A @ ) =  exp[-p(H“’+ EH“’)] (3.5) 



Einstein relations for nonlinear charge transport 2381 

satisfies 
P 

A(@) = exp( - pH''')( 1 - e dh exp(A IH'")H'~'A(A I)).  
0 

This has a well known iterative solution for A @ )  as an infinite sum of products of 
integrals of the type 

A, 

. . . loAn-' dh, H"'( -ihh,) 1 dh,+l H"'( -ihA,+l) . . . 
0 

where 

H'"( -ihh,) exp(h,H'o')H'l' exp( - h,H"'). 

This leads after some manipulation to 

PT = PO( 1 - loP dhl F (  - ihhl) + lo dhl F (  - ihhd lo dhz F (  - ihhz)) + p p ~ ( F ) ~  
P A 1  

P 

- ~ P O ( F ) O  lo dh 1 F (  - ihhl) - $ 3 ~ 0  dA 1 ( F (  - ihh l)F)o + p2po(F)g 

(3.6) 

+. . * (3.7) 

where F(-ihh,) is defined as in (3.6), 

030 = Tr(poF) and ( F (  - ihh)F)o3Tr[poF(- ihA)F].  (3.8) 

Thus averages for t = --CO are distinguished by a suffix zero. Higher terms in the 
perturbation denoted by .  , . will henceforth be omitted. The advantage of the present 
procedure is that insertion of the integral expression of (3.1) into (3.7) yields another 
seven-term expression which may be inserted into 

(n(r)) =Tr[pTn(r)l* (3.9) 
This expression, valid for spatial variations in 4 ( r )  which are not too rapid (i.e. for 
electric fields which are small enough), is 

m-=Po+PokI lo dhl lvd r l  4 ( r d n h ,  -ihhd-(n(rd>01 
P 

Here V is the volume of the system as specified in a grand canonical ensemble. 
In the result obtained by combining (3.9) and (3.10), it will be assumed that the 

equilibrium averages of correlations between particle density operators n (r) (or other 
operators, e.g. ri(r)) remain unchanged when each of the operators entering the 
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correlation is translated by the same vector (ro say). This is the ‘statistical homogeneity’ 
assumption (Katz 1967, Luttinger 1964). One also needs the general results from the 
grand canonical ensemble 

where the mean total number of particles is (N)o .  After some manipulation one finds 
from (3.9) and (3.10) with a = p / k T  

(3.11) 

This is an expansion of the expected form 

( n ( r ) ) = n o + a l ~ ( r ) + ~ a 2 4 * ( r ) + .  . . (no = ( N o /  V) (3.12) 

where the coefficients al  and a2 can now be identified. They are 

a1 = lel(ano/ap)r,v, a 2 = I e I (a2n o/ ap 2, T, v. (3.13) 

One can now proceed as in D 2, by using (2.2) together with the consequences of 

V,(n(r ) )  = - [a1+a24(r) lEY(r) ,  (3.14) 

V,V,(n(r)) = -[a~+a;?4(r)IV~E,(r)+a~E,(r)E~(r). (3.15) 

(3.12): 

Equating the coefficients of E,, E,&, etc, to zero as before, one finds 

(3.16) 

(3.17) 

These results agree with (2.11) provided the quantity q ( r )  is correctly interpreted. ,It is 
an electrochemical potential divided by kT, but its sign depends on the sign of the 
charge of the current carriers and is measured from the energy of the ‘band edge’ A 
(relevant to electrons or holes in semiconductors, for example). It is introduced as 77 in 
equation (1.8) of Landsberg and Hope (1977) and as yi in equation (17.16) of 
Landsberg (1978). It is defined by 

77 = (e/lel)(A - @ ) / k T  (3.19) 
and is the quantity occurring in the Fermi-Dirac distribution 

[exp(xc- 77,) + I]-’. (3.20) 

Here xc is the kinetic energy of electrons divided by kT, (E-Ec) /kT ,  while T,= 
(Pc-Ec) /kT.  For holes in a valence band one would have 

[exp(vv-xv) + I]-’. (3.21) 

The last two results (2.1 l) ,  and higher-order results, could in principle be obtained by 
an extension of the method of this section. 
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It is important to note that the spatial dependence of the conductivity-diffusivity 
ratio defined via (3.16) is to be directly attributed to the spatial dependence of the 
applied electrostatic potential 4(r) given by (2.3). Using (3.16), (2.3) and (3.11) 

(3.22) 

The results (3.17) and (3.18) can likewise be expressed in terms of 4 ( r ) .  
In the expansion (3.1 1) for the particle density operator terms of O[43(r)] have been 

omitted. Thus (3.22) depends only linearly on the electrostatic potential. Based on 
(3.1 l ) ,  note that one might propose the generalised Maxwell-Boltzmann distribution 

(3.23) 

(3.24) 

valid for Fermi degeneracy. The expansion (3.23) is rather novel and is to be compared 
with the non-degenerate Maxwell-Boltzmann distribution 

(n ( 4 )  = exp[lelp4(r)lno. (3.25) 

4. A microscopic treatment 

In this section we investigate an alternative approach to the problem which does not rely 
on setting the current density coefficients equal to zero for the generation of new 
Einstein relations. At the outset we treat the system from a non-equilibrium point of 
view, and our aim is to set up what is essentially a Kubo (1957) formalism; however, the 
interpretation is novel in the sense that it can produce all the field, diffusion and mixed 
contributions to the average current density-the usual Kubo theory examines the 
response to an external perturbation, and produces only the field-dependent terms. 
Liouville’s equation is central to our framework; however, contrary to the approach of 
some authors, e.g. Kalashnikov (1971), we shall not modify the actual form of the 
equation by the addition of infinitesimal terms. This governing equation is fundamen- 
tal, and instead of modifying it, we seek a justification of the inclusion of an effective 
interaction which would produce the required total current density. 

It is well known that diffusion contributions arise as a result of the spatial variations 
of the chemical potential l~ (r) (Gibbs 1906). Consider now a system of particles which 
is not in full equilibrium; we shall associate with it an interaction Hamiltonian HL1’ say, 
corresponding to forces which are externally applied or may be present within the 
system as a result of concentration gradients, and an unperturbed Hamiltonian H. 
Suppose that although we are away from a full equilibrium situation, the particles are 
nevertheless in a state of local equilibrium. That is, the appropriate density matrix is 
given by 

H+Hr’  -j p(r)n(r)dr)]  

where 

(4.1) 

Ee=Trexp  [ (  - p  H + H ? ’ - [  l~ ( r )n ( r )d r ) ] .  (4.2) 
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This local distribution function was introduced by Mori (1958) and its properties have 
been examined by various authors, e.g. Zubarev (1974). Note that the inverse 
temperature p is usually a function of space also, since energy from an external field is 
distributed among the particles; for simplicity, we ignore the existence of temperature 
gradients in this paper, although the framework which follows could well be extended to 
take such energy transfers into account. Equation (4.1) may be derived from informa- 
tion theory (e.g. Katz 1967) using a constraint on the Fourier components of the particle 
number density. In setting up our interpretation we exploit an idea formulated by 
Bogolyubov (1962). When a system relaxes from any non-equilibrium state to a state of 
full equilibrium, this is carried out in two steps. First, local equilibrium is established 
very rapidly in small volume elements, and this is followed by a longer decay towards the 
grand canonical distribution. Essentially there are two relaxation times for the 
processes, n and T respectively, with TI << T.  The time T depends on the total volume, 
whereas T I  corresponds to equilibrium being set up in macroscopically small volumes 
which must nevertheless still contain many particles. Having established the rapid 
occurrence of local equilibrium, almost at the onset of relaxation for our purposes, we 
now make the following analogy which will then be implicit in our development of the 
appropriate Kubo formalism. 

When a system has a local equilibrium density matrix of the type (4.1), it could be 
considered as being formally equivalent to a system described by full equilibrium 
parameters (constant chemical potential p and total number of particles N )  with a total 
Hamiltonian H + H'" where H"' represents only the external interaction. This 
equivalent system would then have a grand canonical distribution 

p = ( l / E )  e ~ p [ - p ( H + H ' ~ ' - p N ) ]  (4.3) 

where, as in (3.1), 

H ' l ' = q  I n(r)c$(r)  d r  (4.4) 

and q is the charge on the particles. If we compare with (4,1), the analogy will be 
achieved if the effective Hamiltonian introduced earlier is given by 

Hi1) =H"'+ [ iu ( r )  - cL1n ( r )  dr. (4.5) 

If we wish to define Hc' in a form similar to (4.4), we may do so by introducing an 
effective potential 

P ( r )  = 4 ( r )  + rF ( r )  - pI /q  (4.6) 

so that 

Hk" ( r )  = q I n (r)c$(e)(r) d r  

and the effective field is 

E'"'(r) = - V~!J ( r )  - (1 /q )Vp ( r ) .  (4.7) 

The calculation of an average current density now follows from Liouville's equation 
with the above arguments taken into account, i.e. we take our governing equation to be 

apldt + i[H +Hi1' est, p ]  = 0 (4.8) 
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with the boundary condition that at t = --a3 p is given by 

Po = (1 P o )  exp[ - P ( H  - pN)I (4.9) 
with an effective interaction Hk“; (4.9) is the boundary condition and s a small 
switching parameter. The usual Kubo formalism has been applied by many authors, 
including Luttinger (1964) who considered the standard Einstein solution as being 
derived from a phenomenological argument. In the linear case, it is well known that the 
average current density is then given by 

GF(r)) = J ‘  dt’ Jo dp’  J dr‘(jv(r’, -iP’)jF(r, t -tf))oE(i?(rf) e”’ (4.10) 

where ( )o is an equilibrium ensemble expectation value (the trace involves po as defined 
in (4.9)). If our generalised field is slowly varying in space, E(e)(r’)=E(e’(r)  in the 
integrand of (4.10), we obtain 

(4.11) 

where E = -Vr$ and r:: is the correlation function which follows directly from (4.10) 
in the slow variation approximation. Comparing the second term of (4.11) with the 
phenomenological form of the diffusion current density, - qD:JV,n, we obtain directly 
the Einstein relation for the linear case as 

P 

-cc 

O’&(r)) = d%v(r) - (gEA/q)Vvp 

(4.12) 

Considering now nonlinear dependences on the field, a conduction current, for 
instance, may be generalised to 

(.iF(r))conduction = c$i(E)Ev(r) (4.13) 

if the field is slowly varying, and c-r‘l) may be regarded as a function of the electric field. 
Formally it turns out that the appropriate correlation function for a“’(E) is very similar 
to that of the linear case. A closed expression for nonlinear response has been proposed 
by Tani (1964). The expectation value of any operator B (when the effective pertur- 
bation H r )  esr appropriate to our formulation is applied) has the form 

( B ) , - ( B ) ~ =  - J ‘  dt’! dPf(hL1)(-iP’)B(t, t’lH+HP’ esr))Oexp(st’) 

where in Tani’s notation 

B (t, t‘lH + Hk“ e’‘) = exp( i 1‘‘ (H  + H?’ e’‘) dT B exp - i ( H  + Hk” esT) dr) 

(4.15) 

and (4.14) is valid to all orders in the perturbation. It may be shown from an equation of 
continuity that 

P 
(4.14) 

-m 0 

) ( Jl: 

(4.16) 

Substituting into (4.14), with B taken as a current density operator, and assuming slow 
spatial variations of E and V p  yields 

(4.17) 

I fir’ = - d r j ( r )  * [E(r)-( l /q)Vp(r)] .  

(jlL(r)) = d ? ( E ,  Vp)Ev(r ) -d?(E,  Vp.)(lIq)Vvp 
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where the generalised correlation function is 

u(G) f iv  = -1im I-: dt’ Io’ dp’ I dr’ &(r’, -ip’)j@(r, t, t’lH +Hi1’ es‘)), exp(st’). (4.18) 
s - 0  

The simplest generalisation for ( j @ ( r ) )  is that of second order in the interaction, which 
corresponds to an evaluation of (4.15) to linear terms only. The latter may be expressed 
in terms of a commutator, the result being 

B(t, t’lH+Hk” esr) - B ( t -  t‘)+ H Y )  (t“-t’) exp(st”) dt”, B(t - t’)  . (4.19) 1 
One may now separate the field and chemical potential derivations in (4.18); thus 

U@,, ( G ) - s + ,  -1im ( I - ldf ’ [oPdp’I  dr’exp(st’)(ju(r’, -ip’)j@(r, t- t’))o 

H:)(t”- t ’ )exp(st’’) , j , (r ,  t - t ’ )  . (4.20) I),) 
The first term corresponds to U:,!; the second may be split into an E-dependent and a 
V p  -dependent contribution. Introducing the polarisation operator 

P ( r )  = (I 1 6 ( r  - rj)rj, 
i 

(4.21) 

we may write 

H?) = -1 d r  [E(r ) - ( l /q )Vp(r ) ] .P( r ) .  (4.22) 

From (4.17), (4.20) and (4.22), the total current density in the slow variation approxi- 
mation for the second-order case is then 

(4.23) 

P 
aE,!s = !z (I,’dt’ Io dp’ dr’  exp(st’) 

x ( j V ( r ’ ,  -ip’)[ - i l : d t ” j  dr”Ps(r”,  t”-t’)ex”st’’),jF(r, t - t ’ )  , I),) 
(4.24) 

Finally, if the effective field (4.9) is not slowly varying, we shall have further 
contributions to the current density. These are obtained from a Taylor expansion of 
E(e)(r’). Equation (4.17) is modified to 
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where 

U$; s l i m  (I‘ dt’ IO’dp’ I dr’ ( jV(r ’ ,  -ip’)j,(r; t, t’lH+H? esT))oexp(st‘)(r: -rA) 
s+o -w 

(4.26) 

and we have retained only the simplest correction in the Taylor expansion. The latter is 
also applied in (4.22). Equation (4.20) now yields 

(4.27) 
vL:) = (1) 1 1 

ulrV +u~:&s--~p~sv6CL fPlrvEsVEE~--P,V~sV~V8CL 
4 4 

where is defined in (4.24) and 

x [  -i[:dt” [ dr“(r!-rE)Ps(r”, t ” - t ’ ) e x p ( s t ” ) , j , ( r , t - t ’ )  

The correlation function (4.26) may also be expressed as 

u(” = lim (1 ‘ dt’ IoP d p  1 dr’ exp(st’)(j,(r’, -ip’)j,(r, t - t’))o(rl\ - rA) 
s-0  -w 

+ ( j V ( r ’ ,  -ip’)[i J r : ~ L 1 ) ( t ” - t i )  exp(st”) dt”,j,(r, t - t ’ ) ] )~r ;  -rA)) 

(4.29) 

which is analogous to (4.20). An expansion of E and V, in (4.22) is then used in (4.29), 
and yields 

(4.30) ( 5 )  ( 5 )  =~F:A + Y,L~A&S -(1/q)Y,vAsvsP + ~ , V A E S Q E E S  - ( l / q ) f l ~ ~ ~ s v ~ V s C L  

where 

vFJA = !2 (1-1 dt‘ Io dp’ [ dr’ exp(st’)(jV(r’, -ip’)j,(r, t - t’))o(ri - rA)), 

yPVA8 = lim s+o (I‘ -m dt’ IoP dp’  I dr’ exp(d)(jV(r’, -$‘I 

P 
(4.31) 

x [  - i j t ; d f” /  dr”Ps(r“ ,  t”-t’)exp(st’’),j,(r, t - t ’ )  

X [ - i [; dt” J’ dr” (r): - rE)P6(r”, t” - t’) exp(st”), j ,  (r,  t - f ’)I) (r; - rA)). 
0 

(4.33) 

Collecting results (4.25), (4.27), (4.30) and defining 
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gives the final form for the total current density (all fields being evaluated at a point r )  

1 1 1 
4 4 4 

+ u ~ ~ 8 (  7 (v, v w  ) ( v A  v U p )  - - (vEvsp )V,Eu - - v,,w )v,E.). 

(4.35) 
The microscopic analysis of this section is an alternative approach which in principle 

generates a whole set of Einstein relations from a non-equilibrium point of view. The 
final expression for the total current density is necessarily quite complicated: the first 
five terms represent the conduction current density; the remaining terms are connected 
with diffusion contributions (involving derivatives of p only) or mixed contributions 
(involving products of E, V p  and their derivatives). If we note that 

VYp = (ap/an)V,,n 
and 

v ~ v , , ~  = (a2p/an2)VAnV,,n + (ap/an)v,v.n, 
then the current density may be written in such a way that a direct comparison with the 
phenomenological form (2.2) can be made. One can then simply extract relations for 
the coefficients D in terms of the correlation functions u to any order: 

q2D(1) = a"'ap/an, 

q'D"' = a"'ap/an, 

q4D'3' = u'3'(ap/dn)2 - qu"'dp2/an2, 

) a d a n ,  q2y'" = ((+(3) + &3)t 

q4D'4' = ~ ' ~ ' ( d p / a n ) ' ,  

qZy"'= u'4 'ap/an = q2y'3', 

q4D(5) = u"'(ap/an )', 
q'y'4' = + ) a d a n ,  

where CLVS = CmGu is the definition of the dagger symbol. 
and u ' ~ )  

respectively, these results are consistent with (2.11) and (3.16)-(3.18), but contain more 
information. 

If one chooses q as negative and identifies 0")' and U")' with 

5. Conclusion 

In this paper it has been shown that one can obtain higher-order Einstein relations as 
they arise in nonlinear transport. Three sets of consistent relations have been obtained, 



Einstein relations for nonlinear charge transport 2389 

and it is clear that the whole procedure can be generalised to yet higher orders so as to 
cover the cases of stronger electric fields and concentration gradients. It can also be 
generalised to cover non-uniform temperatures-a situation which has been avoided 
here for simplicity. 

It has been seen that the macroscopic and the semi-macroscopic methods depend on 
equating the total average current density to zero, whence Einstein relations are 
obtainable by comparing corresponding terms. The microscopic treatment, which was 
based on Liouville’s equation, does not depend on this procedure. There are restric- 
tions on the validity of this theory, however, since the analysis depends on a formal 
analogy between full and local equilibrium (discussed after equation (4.2)). The theory 
is not expected to be applicable until local equilibrium really is established in small 
volumes within the system. But, as noted earlier, the relevant relaxation time T~ is very 
small compared with the total time T for relaxation of the whole system, and we woiild 
therefore anticipate that the procedure is correct over a wide time range. 

In conclusion, we have established extensions to the nonlinear regimes from both 
macroscopic and microscopic points of view. Our framework is rather general, and we 
have included ideas based on the fundamental statistical mechanics of the problem, 
whilst avoiding complexities (Zubarev 1974) which occur in this field. This forms a 
complement to the published work mentioned in the Introduction and provides a firmer 
basis for generalised Einstein relations. 
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